Exploring the Effects of Various Polymeric Backbones on the Performance of a Hydroxyaromatic 1,2,3-Triazole Anion Sensor

Sensors (Basel). 2020 May 24;20(10):2973. doi: 10.3390/s20102973.

Abstract

Polymeric chemosensors are vital sensing tools because of higher sensitivity compared to their monomeric counterparts and tunable mechanical properties. This study focuses on the incorporation of a hydroxyaromatic 1,2,3-triazole sensor, 2-(4-phenyl 1H-1,2,3-triazol-1-yl)phenol (PTP), into polymers. By itself, the triazole has a selective, fluorometric response to the fluoride, acetate, and dihydrogen phosphate anions, and is most responsive to fluoride. Current investigations probe the suitability of various polymeric backbones for the retention and enhancement of the triazole's sensing capabilities. Backbones derived from acrylic acid, methyl methacrylate, divinylbenzene, and styrene were explored. UV-illumination, Nuclear Magnetic Resonance (NMR) titration, and ultraviolet-visible (UV-Vis) absorption and fluorescence spectroscopy studies are used to investigate the performance of newly synthesized polymers and the derivatives of PTP that serve as the polymers' precursors. Among the polymers investigated, copolymers with styrene proved best; these systems retained the sensing capabilities and were amenable to tuning for sensitivity.

Keywords: 1,2,3-triazole; anion detection; polymeric chemosensor.