Effects of FTMT Expression by Retinal Pigment Epithelial Cells on Features of Angiogenesis

Int J Mol Sci. 2020 May 21;21(10):3635. doi: 10.3390/ijms21103635.

Abstract

Aberrant angiogenesis is a pathological feature of a number of diseases and arises from the uncoordinated expression of angiogenic factors as response to different cellular stresses. Age-related macular degeneration (AMD), a leading cause of vision loss, can result from pathological angiogenesis. As a mutation in the mitochondrial ferritin (FTMT) gene has been associated with AMD, its possible role in modulating angiogenic factors and angiogenesis was investigated. FTMT is an iron-sequestering protein primarily expressed in metabolically active cells and tissues with high oxygen demand, including retina. In this study, we utilized the human retinal pigment epithelial cell line ARPE-19, both as undifferentiated and differentiated cells. The effects of proinflammatory cytokines, FTMT knockdown, and transient and stable overexpression of FTMT were investigated on expression of pro-angiogenic vascular endothelial growth factor (VEGF) and anti-angiogenic pigment epithelial-derived factor (PEDF). Proinflammatory cytokines induced FTMT and VEGF expression, while NF-κB inhibition significantly reduced FTMT expression. VEGF protein and mRNA expression were significantly increased in FTMT-silenced ARPE-19 cells. Using an in vitro angiogenesis assay with endothelial cells, we showed that conditioned media from FTMT-overexpressing cells had significant antiangiogenic effects. Collectively, our findings indicate that increased levels of FTMT inhibit angiogenesis, possibly by reducing levels of VEGF and increasing PEDF expression. The cellular models developed can be used to investigate if increased FTMT may be protective in angiogenic diseases, such as AMD.

Keywords: age-related macular degeneration; angiogenesis; differentiation; mitochondrial ferritin; retinal pigment epithelium; vascular endothelial growth factor.

MeSH terms

  • Cell Line
  • Cytokines / genetics
  • Cytokines / metabolism
  • Eye Proteins / genetics
  • Eye Proteins / metabolism
  • Ferritins / genetics
  • Ferritins / metabolism*
  • Humans
  • Mitochondrial Proteins / genetics
  • Mitochondrial Proteins / metabolism*
  • NF-kappa B / genetics
  • NF-kappa B / metabolism
  • Neovascularization, Physiologic*
  • Nerve Growth Factors / genetics
  • Nerve Growth Factors / metabolism
  • Retinal Pigment Epithelium / cytology
  • Retinal Pigment Epithelium / metabolism*
  • Serpins / genetics
  • Serpins / metabolism
  • Vascular Endothelial Growth Factor A / genetics
  • Vascular Endothelial Growth Factor A / metabolism

Substances

  • Cytokines
  • Eye Proteins
  • Mitochondrial Proteins
  • NF-kappa B
  • Nerve Growth Factors
  • Serpins
  • Vascular Endothelial Growth Factor A
  • mitochondrial ferritin, human
  • pigment epithelium-derived factor
  • Ferritins