Subjective Versus Quantitative Methods of Assessing Breast Density

Diagnostics (Basel). 2020 May 21;10(5):331. doi: 10.3390/diagnostics10050331.

Abstract

In order to find a consistent, simple and time-efficient method of assessing mammographic breast density (MBD), different methods of assessing density comparing subjective, quantitative, semi-subjective and semi-quantitative methods were investigated. Subjective MBD of anonymized mammographic cases (n = 250) from a national breast-screening programme was rated by 49 radiologists from two countries (UK and USA) who were voluntarily recruited. Quantitatively, three measurement methods, namely VOLPARA, Hand Delineation (HD) and ImageJ (IJ) were used to calculate breast density using the same set of cases, however, for VOLPARA only mammographic cases (n = 122) with full raw digital data were included. The agreement level between methods was analysed using weighted kappa test. Agreement between UK and USA radiologists and VOLPARA varied from moderate (κw = 0.589) to substantial (κw = 0.639), respectively. The levels of agreement between USA, UK radiologists, VOLPARA with IJ were substantial (κw = 0.752, 0.768, 0.603), and with HD the levels of agreement varied from moderate to substantial (κw = 0.632, 0.680, 0.597), respectively. This study found that there is variability between subjective and objective MBD assessment methods, internationally. These results will add to the evidence base, emphasising the need for consistent, simple and time-efficient MBD assessment methods. Additionally, the quickest method to assess density is the subjective assessment, followed by VOLPARA, which is compatible with a busy clinical setting. Moreover, the use of a more limited two-scale system improves agreement levels and could help minimise any potential country bias.

Keywords: American College of Radiology Breast Imaging Reporting and Data System; BI-RADS; ImageJ; VOLPARA; automated volumetric breast density measurement; breast density; breast imaging; mammographic breast density; quantitative density assessment.