Designing a Mixed Multilayer Wavelet Neural Network for Solving ERI Inversion Problem With Massive Amounts of Data: A Hybrid STGWO-GD Learning Approach

IEEE Trans Cybern. 2022 Feb;52(2):925-936. doi: 10.1109/TCYB.2020.2990319. Epub 2022 Feb 16.

Abstract

This study aims to develop a novel wavelet neural-network (WNN) model for solving electrical resistivity imaging (ERI) inversion with massive amounts of measured data in control and measurement fields. In the proposed method, we design a mixed multilayer WNN (MMWNN) which uses Morlet and Mexican wavelons as different activation functions in a cascaded hidden layer structure. Meanwhile, a hybrid STGWO-GD learning approach is used to improve the learning ability of the MMWNN, which is a combination of the self-tuning grey wolf optimizer (STGWO) and the gradient descent (GD) algorithm adopting the advantages of each other. Moreover, updating formulas of the GD algorithm are derived, and a Gaussian updating operator with weighted hierarchical hunting, a chaotic oscillation equation, and a nonlinear modulation coefficient are introduced to improve the hierarchical hunting and the control parameter adjustment of the modified STGWO. Five examples are used with the aim of assessing the availability and feasibility of the proposed inversion method. The inversion results are promising and show that the introduced method is superior to other competitors in terms of inversion accuracy and computational efficiency. Furthermore, the effectiveness of the proposed method is demonstrated over a classical benchmark successfully.