Left ventricular global longitudinal strain in bicupsid aortic valve patients: head-to-head comparison between computed tomography, 4D flow cardiovascular magnetic resonance and speckle-tracking echocardiography

Int J Cardiovasc Imaging. 2020 Sep;36(9):1771-1780. doi: 10.1007/s10554-020-01883-9. Epub 2020 May 25.

Abstract

Left ventricular global longitudinal strain (LVGLS) analysis is a sensitive measurement of myocardial deformation most often done using speckle-tracking transthoracic echocardiography (TTE). We propose a novel approach to measure LVGLS using feature-tracking software on the magnitude dataset of 4D flow cardiovascular magnetic resonance (CMR) and compare it to dynamic computed tomography (CT) and speckle tracking TTE derived measurements. In this prospective cohort study 59 consecutive adult patients with a bicuspid aortic valve (BAV) were included. The study protocol consisted of TTE, CT, and CMR on the same day. Image analysis was done using dedicated feature-tracking (4D flow CMR and CT) and speckle-tracking (TTE) software, on apical 2-, 3-, and 4-chamber long-axis multiplanar reconstructions (4D flow CMR and CT) or standard apical 2-, 3-, and 4-chamber acquisitions (TTE). CMR and CT GLS analysis was feasible in all patients. Good correlations were observed for GLS measured by CMR (- 21 ± 3%) and CT (- 20 ± 3%) versus TTE (- 20 ± 3%, Pearson's r: 0.67 and 0.65, p < 0.001). CMR also correlated well with CT (Pearson's r 0.62, p < 0.001). The inter-observer analysis showed moderate to good reproducibility of GLS measurement by CMR, CT and TTE (Pearsons's r: 0.51, 0.77, 0.70 respectively; p < 0.05). Additionally, ejection fraction (EF), end-diastolic and end-systolic volume measurements (EDV and ESV) correlated well between all modalities (Pearson's r > 0.61, p < 0.001). Feature-tracking GLS analysis is feasible using the magnitude images acquired with 4D flow CMR. GLS measurement by CMR correlates well with CT and speckle-tracking 2D TTE. GLS analysis on 4D flow CMR allows for an integrative approach, integrating flow and functional data in a single sequence. Not applicable, observational study.

Keywords: 4D flow; Bicuspid aortic valve; Cardiac magnetic resonance imaging; Computed tomography; Echocardiography; Global longitudinal strain.

Publication types

  • Comparative Study
  • Observational Study
  • Video-Audio Media

MeSH terms

  • Adolescent
  • Adult
  • Aortic Valve / abnormalities*
  • Aortic Valve / diagnostic imaging
  • Aortic Valve / physiopathology
  • Bicuspid Aortic Valve Disease
  • Echocardiography*
  • Feasibility Studies
  • Female
  • Heart Valve Diseases / diagnostic imaging*
  • Heart Valve Diseases / physiopathology
  • Humans
  • Magnetic Resonance Imaging*
  • Male
  • Middle Aged
  • Multimodal Imaging
  • Myocardial Contraction*
  • Observer Variation
  • Predictive Value of Tests
  • Prospective Studies
  • Radiographic Image Interpretation, Computer-Assisted
  • Reproducibility of Results
  • Stroke Volume
  • Tomography, X-Ray Computed*
  • Ventricular Function, Left*
  • Young Adult