Inhibition of JAK1/2 can overcome EGFR-TKI resistance in human NSCLC

Biochem Biophys Res Commun. 2020 Jun 18;527(1):305-310. doi: 10.1016/j.bbrc.2020.04.095. Epub 2020 May 11.

Abstract

Non-small lung cancer (NSCLC) is the most common cancer in the world. The epidermal growth factor receptor (EGFR) gene is mutated in approximately 10% of lung cancer cases in the US and 50% of lung cancer in Asia. The representative target therapeutic agent, erlotinib (EGFR tyrosine kinase inhibitor; EGFR TKI), is effective in inactivating EGFR in lung cancer patients. However, approximately 50-60% of patients are resistant to EGFR TKI. These populations are associated with the EGFR mutation. To overcome resistance to EGFR TKI, we discovered a JAK1 inhibitor, CJ14939. We investigated the efficacy of CJ14939 in human NSCLC cell lines in vitro and in vivo. Our results showed that CJ14939 induced the inhibition of cell growth. Moreover, we demonstrated that combination treatment with erlotinib and CJ14939 induced cell death in vitro and inhibited tumor growth in vivo. In addition, we confirmed the suppression of phosphorylated EGFR, JAK1, and Stat3 expression in erlotinib and CJ14939-treated human NSCLC cell lines. Our results provide evidence that JAK inhibition overcomes resistance to EGFR TKI in human NSCLCs.

Keywords: CJ14939; EGFR inhibitor; Erlotinib; JAK inhibitor; NSCLC; Resistance.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology*
  • Carcinoma, Non-Small-Cell Lung / drug therapy*
  • Carcinoma, Non-Small-Cell Lung / metabolism
  • Carcinoma, Non-Small-Cell Lung / pathology
  • Cell Death / drug effects
  • Cell Proliferation / drug effects
  • Dose-Response Relationship, Drug
  • Drug Resistance, Neoplasm / drug effects
  • Drug Screening Assays, Antitumor
  • ErbB Receptors / antagonists & inhibitors
  • ErbB Receptors / genetics
  • ErbB Receptors / metabolism
  • Erlotinib Hydrochloride / chemistry
  • Erlotinib Hydrochloride / pharmacology*
  • Female
  • Humans
  • Janus Kinase 1 / antagonists & inhibitors*
  • Janus Kinase 1 / metabolism
  • Lung Neoplasms / drug therapy*
  • Lung Neoplasms / metabolism
  • Lung Neoplasms / pathology
  • Mice
  • Mice, Nude
  • Molecular Structure
  • Mutation
  • Neoplasms, Experimental / drug therapy
  • Neoplasms, Experimental / metabolism
  • Neoplasms, Experimental / pathology
  • Protein Kinase Inhibitors / chemistry
  • Protein Kinase Inhibitors / pharmacology*
  • Structure-Activity Relationship
  • Tumor Cells, Cultured

Substances

  • Antineoplastic Agents
  • Protein Kinase Inhibitors
  • Erlotinib Hydrochloride
  • EGFR protein, human
  • ErbB Receptors
  • JAK1 protein, human
  • Janus Kinase 1