Biocompatible Nanovesicular Drug Delivery Systems with Targeting Potential for Autoimmune Diseases

Curr Pharm Des. 2020;26(42):5488-5502. doi: 10.2174/1381612826666200523174108.

Abstract

Autoimmune diseases are collectively addressed as chronic conditions initiated by the loss of one's immunological tolerance, where the body treats its own cells as foreigners or self-antigens. These hay-wired antibodies or immunologically capable cells lead to a variety of disorders like rheumatoid arthritis, psoriatic arthritis, systemic lupus erythematosus, multiple sclerosis and recently included neurodegenerative diseases like Alzheimer's, Parkinsonism and testicular cancer triggered T-cells induced autoimmune response in testes and brain. Conventional treatments for autoimmune diseases possess several downsides due to unfavourable pharmacokinetic behaviour of drug, reflected by low bioavailability, rapid clearance, offsite toxicity, restricted targeting ability and poor therapeutic outcomes. Novel nanovesicular drug delivery systems including liposomes, niosomes, proniosomes, ethosomes, transferosomes, pharmacosomes, ufasomes and biologically originated exosomes have proved to possess alluring prospects in supporting the combat against autoimmune diseases. These nanovesicles have revitalized available treatment modalities as they are biocompatible, biodegradable, less immunogenic and capable of carrying high drug payloads to deliver both hydrophilic as well as lipophilic drugs to specific sites via passive or active targeting. Due to their unique surface chemistry, they can be decorated with physiological or synthetic ligands to target specific receptors overexpressed in different autoimmune diseases and can even cross the blood-brain barrier. This review presents exhaustive yet concise information on the potential of various nanovesicular systems as drug carriers in improving the overall therapeutic efficiency of the dosage regimen for various autoimmune diseases. The role of endogenous exosomes as biomarkers in the diagnosis and prognosis of autoimmune diseases along with monitoring progress of treatment will also be highlighted.

Keywords: Alzheimer's disease; Autoimmune diseases; exosomes; extracellular vesicles; liposomes; nanophytosomes; pharmacosomes; stealth liposomes.

Publication types

  • Review

MeSH terms

  • Autoimmune Diseases* / drug therapy
  • Drug Carriers
  • Drug Delivery Systems
  • Exosomes*
  • Humans
  • Liposomes
  • Male
  • Testicular Neoplasms*

Substances

  • Drug Carriers
  • Liposomes