Epitopes with similar physicochemical properties contribute to cross reactivity between peanut and tree nuts

Mol Immunol. 2020 May 19:122:223-231. doi: 10.1016/j.molimm.2020.03.017. Online ahead of print.

Abstract

Many individuals with peanut (PN) allergy have severe reactions to tree nuts (TN) such as walnuts or cashews. Although allergenic proteins in TN and PN have overall low identity, they share discrete sequences similar in physicochemical properties (PCP) to known IgE epitopes. Here, PCP-consensus peptides (cp, 13 aa and 31 aa) were identified from an alignment of epitope rich regions of walnut vicilin, Jug r 2, leader sequence (J2LS) and cross-reactive epitopes in the 2S albumins of peanut and synthesized. A peptide similarity search in the Structural Database of Allergenic Proteins (SDAP) revealed a network of peptides similar (low property distance, PD) to the 13 aa cp (13cp) in many different plant allergens. Peptides similar to the 13cp in PN and TN allergens bound IgE from sera of patients allergic to PN and TN in peptide microarray analysis. The 13cp was used to produce a rabbit consensus peptide antibody (cpAB) that detected proteins containing repeats similar to the 13cp in western blots of various nut extracts, in which reactive proteins were identified by mass spectrometry. The cpAB bound more specifically to allergens and nut extracts containing multiple repeats similar to the 13 cp, such as almond (Pru du 6), peanut (Ara h 2) and walnut (Jug r 2). IgE binding to various nut extracts is inhibited by recombinant J2LS sequence and synthetic 31cp. Thus, several repeated sequences similar to the 13cp are bound by IgE. Multiple similar repeats in several allergens could account for reaction severity and clinically relevant cross-reactivity to PN and TN. These findings may help improve detection, diagnostic, and therapeutic tools.

Keywords: Allergen; Computational prediction; Cross reactivity; Epitopes; Food allergy; IgE; Peanut allergy; Structural Database of Allergic Proteins; Tree nut allergy; Walnut allergy.