Matrix-assisted laser desorption/ionization time-of-flight/time-of-flight tandem mass spectrometry (negative ion mode) of French Oak lignin: A novel series of lignin and tricin derivatives attached to carbohydrate and shikimic acid moieties

Rapid Commun Mass Spectrom. 2020 Sep 30;34(18):e8841. doi: 10.1002/rcm.8841.

Abstract

Rationale: We report the top-down lignomic analysis of the virgin released lignin (VRL) small oligomers obtained from French Oak wood.

Methods: We have used MALDI-TOF-MS in the negative ion mode for the analysis of the complex mixture of lignin oligomers extracted from French Oak wood. High-energy CID-TOF/TOF-MS/MS analyses were used to support the postulated precursor ion structures.

Results: Twenty compounds were identified using MALDI-TOF-MS/MS of the VRL extracted from French Oak wood: seven tricin derivatives and/or flavonoids, three syringylglycerol derivatives, two syringol derivatives, two flavonolignin derivatives, and six miscellaneous compounds: luteoferol, lariciresinol isomer, 5-hydroxy guaiacyl derivative, syringyl -C10 H10 O2 dimer, trihydroxy benzaldehyde derivative, and aryl tetralin lignan derivative. Most of the identified compounds were in the form of carbohydrate and/or shikimic acid complexes.

Conclusions: The analysis of this complex mixture led to the identification of a series of lignin dimers, novel lignin-carbohydrate complexes (LCC), and unique tricin derivatives linked to different types of carbohydrates and shikimic acid moieties. This finding supports the presence of lignin-carbohydrate complexes in the isolated VRL. These analyses also showed that French Oak lignin is abundant in syringol moieties present in the lignin syringyl units or tricin derivatives. Moreover, the identification of some lignin-carbohydrate and/or flavonoid-shikimic acid complexes could provide new insight into the relationship between the biosynthesis of lignin and tricin.