Effects of Graphene Nanosheets with Different Lateral Sizes as Conductive Additives on the Electrochemical Performance of LiNi0.5Co0.2Mn0.3O2 Cathode Materials for Li Ion Batteries

Polymers (Basel). 2020 May 19;12(5):1162. doi: 10.3390/polym12051162.

Abstract

In this study, we focus on lateral size effects of graphene nanosheets as conductive additives for LiNi0.5Co0.2Mn0.3O2 (NCM) cathode materials for Li-ion batteries. We used two different lateral sizes of graphene, 13 (GN-13) and 28 µm (GN-28). It can be found that the larger sheet sizes of graphene nanosheets give a poorer rate capability. The electrochemical measurements indicate that GN-13 delivers an average capacity of 189.8 mAh/g at 0.1 C and 114.2 mAh/g at 2 C and GN-28 exhibits an average capacity of 179.4 mAh/g at 0.1 C and only 6 mAh/g at 2 C. Moreover, according to the results of alternating current (AC) impedance, it can be found that the GN-28 sample has much higher resistance than that of GN-13. The reason might be attributed to that GN-28 has a longer diffusion distance of ion transfer and the mismatch of particle size between NCM and GN-28. The corresponding characterization might provide important reference for Li-ion battery applications.

Keywords: Li-ion batteries; cathode; conductive additives; graphene.