Lightweight Proof of Game (LPoG): A Proof of Work (PoW)'s Extended Lightweight Consensus Algorithm for Wearable Kidneys

Sensors (Basel). 2020 May 19;20(10):2868. doi: 10.3390/s20102868.

Abstract

In healthcare, interoperability is widely adopted in the case of cross-departmental or specialization cases. As the human body demands multiple specialized and cross-disciplined medical experiments, interoperability of business entities like different departments, different specializations, the involvement of legal and government monitoring issues etc. are not sufficient to reduce the active medical cases. A patient-centric system with high capability to collect, retrieve, store or exchange data is the demand for present and future times. Such data-centric health processes would bring automated patient medication, or patient self-driven trusted and high satisfaction capabilities. However, data-centric processes are having a huge set of challenges such as security, technology, governance, adoption, deployment, integration etc. This work has explored the feasibility to integrate resource-constrained devices-based wearable kidney systems in the Industry 4.0 network and facilitates data collection, liquidity, storage, retrieval and exchange systems. Thereafter, a Healthcare 4.0 processes-based wearable kidney system is proposed that is having the blockchain technology advantages. Further, game theory-based consensus algorithms are proposed for resource-constrained devices in the kidney system. The overall system design would bring an example for the transition from the specialization or departmental-centric approach to data and patient-centric approach that would bring more transparency, trust and healthy practices in the healthcare sector. Results show a variation of 0.10 million GH/s to 0.18 million GH/s hash rate for the proposed approach. The chances of a majority attack in the proposed scheme are statistically proved to be minimum. Further Average Packet Delivery Rate (ADPR) lies between 95% to 97%, approximately, without the presence of outliers. In the presence of outliers, network performance decreases below 80% APDR (to a minimum of 41.3%) and this indicates that there are outliers present in the network. Simulation results show that the Average Throughput (AT) value lies between 120 Kbps to 250 Kbps.

Keywords: attacks; bit-exchange; blockchain; challenge-response; cryptocurrency; game theory; gash rate; healthcare; lightweightness.

MeSH terms

  • Algorithms
  • Blockchain*
  • Consensus
  • Humans
  • Kidneys, Artificial*
  • Wearable Electronic Devices*