Effect of Human Umbilical Cord Perivascular Cell-Conditioned Media in an Adult Zebrafish Model of Traumatic Brain Injury

Zebrafish. 2020 May 20. doi: 10.1089/zeb.2020.1859. Online ahead of print.

Abstract

The pathophysiological events of secondary brain injury contribute to poor outcome after traumatic brain injury (TBI). The neuroprotective effects of mesenchymal cells have been extensively studied and evidence suggests that their effects are mostly mediated through paracrine effects. Human umbilical cord perivascular cells (HUCPVCs) are mesenchymal stem cells with potential therapeutic value in TBI. In this study, we assessed the effect of HUCPVC-conditioned media (CM) in an established adult zebrafish model of TBI induced by pulsed high-intensity focused ultrasound (pHIFU). This model demonstrates similarities to mammalian outcome after TBI. Administration of HUCPVC-CM 1 h postinjury (hpi) resulted in improved outcome after pHIFU-induced TBI. Western blot and immunohistochemistry results demonstrated that the HUCPVC-CM reduced (p < 0.05) reactive astrogliosis at 24 hpi. Moreover, at 24 hpi, the HUCPVC-CM treatment resulted in reduced apoptosis in HUCPVC-CM-treated zebrafish. Behavioral analysis demonstrated improvement in locomotor activity (p < 0.05) and anxiety (p < 0.05) at 6 and 24 hpi following HUCPVC-CM treatment. Overall, HUCPVC-CM treatment improved acute outcome measures in pHIFU-injured zebrafish. Collectively, the data demonstrate a cell-free treatment approach for traumatic brain injuries.

Keywords: HUCPVCs; astrogliosis; behaviour; high intensity focused ultrasound; traumatic brain injury; zebrafish.