Low Concentration of Withaferin a Inhibits Oxidative Stress-Mediated Migration and Invasion in Oral Cancer Cells

Biomolecules. 2020 May 17;10(5):777. doi: 10.3390/biom10050777.

Abstract

Withaferin A (WFA) has been reported to inhibit cancer cell proliferation based on high cytotoxic concentrations. However, the low cytotoxic effect of WFA in regulating cancer cell migration is rarely investigated. The purpose of this study is to investigate the changes in migration and mechanisms of oral cancer Ca9-22 cells after low concentrations of WFA treatment. WFA under 0.5 μM at 24 h treatment shows no cytotoxicity to oral cancer Ca9-22 cells (~95% viability). Under this condition, WFA triggers reactive oxygen species (ROS) production and inhibits 2D (wound healing) and 3D cell migration (transwell) and Matrigel invasion. Mechanically, WFA inhibits matrix metalloproteinase (MMP)-2 and MMP-9 activities but induces mRNA expression for a group of antioxidant genes, such as nuclear factor, erythroid 2-like 2 (NFE2L2), heme oxygenase 1 (HMOX1), glutathione-disulfide reductase (GSR), and NAD(P)H quinone dehydrogenase 1 (NQO1)) in Ca9-22 cells. Moreover, WFA induces mild phosphorylation of the mitogen-activated protein kinase (MAPK) family, including extracellular signal-regulated kinases 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), and p38 expression. All WFA-induced changes were suppressed by the presence of ROS scavenger N-acetylcysteine (NAC). Therefore, these results suggest that low concentration of WFA retains potent ROS-mediated anti-migration and -invasion abilities for oral cancer cells.

Keywords: Withaferin A; antioxidant signaling; invasion; matrix metalloproteinases; migration; oral cancer; oxidative stress.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antineoplastic Agents, Phytogenic / pharmacology*
  • Cell Line, Tumor
  • Cell Movement / drug effects*
  • Cell Proliferation / drug effects
  • Glutathione Reductase / genetics
  • Glutathione Reductase / metabolism
  • Heme Oxygenase-1 / genetics
  • Heme Oxygenase-1 / metabolism
  • Humans
  • MAP Kinase Signaling System
  • Matrix Metalloproteinase 2 / genetics
  • Matrix Metalloproteinase 2 / metabolism
  • Matrix Metalloproteinase 9 / genetics
  • Matrix Metalloproteinase 9 / metabolism
  • Mouth Neoplasms / metabolism*
  • NAD(P)H Dehydrogenase (Quinone) / genetics
  • NAD(P)H Dehydrogenase (Quinone) / metabolism
  • NF-E2-Related Factor 2 / genetics
  • NF-E2-Related Factor 2 / metabolism
  • Oxidative Stress*
  • Withanolides / pharmacology*
  • p38 Mitogen-Activated Protein Kinases / genetics
  • p38 Mitogen-Activated Protein Kinases / metabolism

Substances

  • Antineoplastic Agents, Phytogenic
  • NF-E2-Related Factor 2
  • NFE2L2 protein, human
  • Withanolides
  • HMOX1 protein, human
  • Heme Oxygenase-1
  • NAD(P)H Dehydrogenase (Quinone)
  • NQO1 protein, human
  • Glutathione Reductase
  • p38 Mitogen-Activated Protein Kinases
  • MMP2 protein, human
  • Matrix Metalloproteinase 2
  • MMP9 protein, human
  • Matrix Metalloproteinase 9
  • withaferin A