A Novel and Potentially MultifacetedDehydroascorbate Reductase Increasing theAntioxidant Systems Is Induced by Beauvericinin Tomato

Antioxidants (Basel). 2020 May 16;9(5):435. doi: 10.3390/antiox9050435.

Abstract

Dehydroascorbate reductases (DHARs) are important enzymes that reconvert the dehydroascorbic acid (DHA) into ascorbic acid (ASC). They are involved in the plant response to oxidative stress, such as that induced by the mycotoxin beauvericin (BEA). Tomato plants were treated with 50 µM of BEA; the main antioxidant compounds and enzymes were evaluated. DHARs were analyzed in the presence of different electron donors by native and denaturing electrophoresis as well as by western blot and mass spectrometry to identify a novel induced protein with DHAR activity. Kinetic parameters for dehydroascorbate (DHA) and glutathione (GSH) were also determined. The novel DHAR was induced after BEA treatment. It was GSH-dependent and possessed lower affinity to DHA and GSH than the classical DHARs. Interestingly, the mass spectrometry analysis of the main band appearing on sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) revealed a chloroplast sedoheptulose 1,7-bisphosphatase, a key enzyme of the Calvin cycle, and a chloroplast mRNA-binding protein, suggesting that the DHA reducing capacity could be a side activity or the novel DHAR could be part of a protein complex. These results shed new light on the ascorbate-glutathione regulation network under oxidative stress and may represent a new way to increase the plant antioxidant defense system, plant nutraceutical value, and the health benefits of plant consumption.

Keywords: 1,7-sedoheptulose bisphosphatase; RNA-binding protein; antioxidants; ascorbate; beauvericin; dehydroascorbate reductase; tomato.