Characterising Free-Range Layer Flocks Using Unsupervised Cluster Analysis

Animals (Basel). 2020 May 15;10(5):855. doi: 10.3390/ani10050855.

Abstract

This study aimed to identify sub-populations of free-range laying hens and describe the pattern of their resource usage, which can affect hen performance and welfare. In three commercial flocks, 3125 Lohmann Brown hens were equipped with radio-frequency identification (RFID) transponder leg bands and placed with their flock companions, resulting in a total of 40,000 hens/flock. Hens were monitored for their use of the aviary system, including feeder lines, nest boxes, and the outdoor range. K-means and agglomerative cluster analysis, optimized with the Calinski-Harabasz Criterion, was performed and identified three clusters. Individual variation in time duration was observed in all the clusters with the highest individual differences observed on the upper feeder (140 ± 1.02%) and the range (176 ± 1.03%). Hens of cluster 1 spent the least amount time on the range and the most time on the feed chain located at the upper aviary tier (p < 0.05). We conclude that an uneven load on the resources, as well as consistent and inconsistent movement patterns, occur in the hen house. Further analysis of the data sets using classification models based on support vector machines, artificial neural networks, and decision trees are warranted to investigate the contribution of these and other parameters on hen performance.

Keywords: aviary; eggs; individual; pasture; poultry; radio frequency identification (RFID); spatial; technology; time budget; variation; welfare.

Grants and funding