Generalized sequential state discrimination for multiparty QKD and its optical implementation

Sci Rep. 2020 May 19;10(1):8247. doi: 10.1038/s41598-020-63719-9.

Abstract

Sequential state discrimination is a strategy for N separated receivers. As sequential state discrimination can be applied to multiparty quantum key distribution (QKD), it has become one of the relevant research fields in quantum information theory. Up to now, the analysis of sequential state discrimination has been confined to special cases. In this report, we consider a generalization of sequential state discrimination. Here, we do not limit the prior probabilities and the number of quantum states and receivers. We show that the generalized sequential state discrimination can be expressed as an optimization problem. Moreover, we investigate a structure of generalized sequential state discrimination for two quantum states and apply it to multiparty QKD. We demonstrate that when the number of receivers is not too many, generalized sequential state discrimination for two pure states can be suitable for multiparty QKD. In addition, we show that generalized sequential state discrimination for two mixed states can be performed with high optimal success probability. This optimal success probability is even higher than those of quantum reproducing and quantum broadcasting strategy. Thus, generalized sequential state discrimination of mixed states is adequate for performing multiparty QKD. Furthermore, we prove that generalized sequential state discrimination can be implemented experimentally by using linear optics. Finally, we analyze the security of multiparty QKD provided by optimal sequential state discrimination. Our analysis shows that the multiparty QKD guarantees nonzero secret key rate even in low channel efficiency.