Probing the limits of linker substitution in aluminum MOFs through water vapor sorption studies: mixed-MOFs instead of mixed-linker CAU-23 and MIL-160 materials

Dalton Trans. 2020 Jun 9;49(22):7373-7383. doi: 10.1039/d0dt01044h.

Abstract

We report a systematic study on the possibility of forming mixed-linker metal-organic frameworks (MOFs) spanning between the aluminum MOFs CAU-23 and MIL-160 with their 2,5-thiophenedicarboxylate (TDC) and 2,5-furandicarboxylate (FDC) linkers, respectively. The planned synthesis of a mixed-linker MOF, combining TDC and FDC in the framework turned out to yield a rather largely intricate mixture of CAU-23 and MIL-160. This is due to the different opening angles of 150° for TDC versus 120° for FDC and the concomitant cis-trans versus cis-only OH-bridges in the infinite secondary building unit {Al(μ-OH)(O2C-)} chains. At the same time, the CAU-23 phase is accompanied by the polymorphic MIL-53-TDC phase with trans-only OH-bridges. The measurement of water vapor sorption isotherms was the method of choice to confirm the formation of mixed MOFs instead of mixed-linker phases. Thereby, the water sorption isotherms indicate the simultaneous formation of both MOF phases, albeit they do not exclude mixed-linker MOFs which may have formed at low levels of substitution. The differentiation via powder X-ray diffractometry (PXRD), IR-spectroscopy and nitrogen sorption was either not conclusive enough or impossible, due to similarities of the neat MOF phases. The synthesized MOF mixtures within the TDC : FDC ratios of 38 : 62 up to 82 : 18 exhibit two or three uptake steps in the water sorption isotherm, with the first two corresponding to an overlay from the individual water sorption isotherm of CAU-23 and MIL-160 and a third one from the additional MIL-53-TDC.