Experimental investigation of phase separation in binary dusty plasmas under microgravity

Phys Rev E. 2020 Apr;101(4-1):043213. doi: 10.1103/PhysRevE.101.043213.

Abstract

Three-dimensionally extended dusty plasmas containing mixtures of two particle species of different size have been investigated under microgravity conditions. To distinguish the species even at small size disparities, one of the species is marked with a fluorescent dye, and a modified two-camera video microscopy setup is used for position determination and tracking. Phase separation is found even when the size disparity is below 5%. Particles are tracked to obtain the diffusion flux, and resulting diffusion coefficients are calculated to be about -10^{-6}mm^{2}/s, which is in the expected range for a phase separation process driven by plasma forces. Additionally, a measure for the strength of the phase separation is presented that allows us to quickly characterize measurements. There is a clear correlation between size disparity and phase separation strength.