Acoustic spin transfer to a subwavelength spheroidal particle

Phys Rev E. 2020 Apr;101(4-1):043102. doi: 10.1103/PhysRevE.101.043102.

Abstract

We demonstrate that the acoustic spin of a first-order Bessel beam can be transferred to a subwavelength (prolate) spheroidal particle at the beam axis in a viscous fluid. The induced radiation torque is proportional to the acoustic spin, which scales with the beam energy density. The analysis of the particle rotational dynamics in a Stokes flow regime reveals that its angular velocity varies linearly with the acoustic spin. Asymptotic expressions of the radiation torque and angular velocity are obtained for a quasispherical and infinitely thin particle. Excellent agreement is found between the theoretical results of radiation torque and finite-element simulations. The induced particle spin is predicted and analyzed using the typical parameter values of the acoustical vortex tweezer and levitation devices. We discuss how the beam energy density and fluid viscosity can be assessed by measuring the induced spin of the particle.