Synthesis and fabrication of g-C3N4-based materials and their application in elimination of pollutants

Sci Total Environ. 2020 Aug 20:731:139054. doi: 10.1016/j.scitotenv.2020.139054. Epub 2020 May 5.

Abstract

With the fast development of industrial and human activity, large amounts of persistent organic pollutants, heavy metal ions and radionuclides are released into the natural environment, which results in environmental pollution. The efficient elimination of the natural environment is crucial for the protection of environment to against the pollutants' toxicity to human beings and living organisms. Graphitic carbon nitride (g-C3N4) has drawn multidisciplinary attention especially in environmental pollutants' cleanup due to its special physicochemical properties. In this review, we summarized the recent works about the synthesis of g-C3N4, element-doping, structure modification of g-C3N4 and g-C3N4-based materials, and their application in the sorption, photocatalytic degradation and reduction-solidification of persistent organic pollutants and heavy metal ions. The interaction mechanisms were discussed from advanced spectroscopic analysis and computational approaches at molecular level. The challenges and future perspectives of g-C3N4-based materials' application in environmental pollution management are presented in the end. This review highlights the real applications of g-C3N4-based materials as adsorbents or photocatalysts in the adsorption-reduction-solidification of metal ions or photocatalytic degradation of organic pollutants. The contents are helpful for the undergraduate students to understand the recent works in the elimination of organic/inorganic pollutants in their pollution management.

Keywords: Adsorption-reduction-solidification; Organic/inorganic pollutants; Photocatalytic degradation; g-C(3)N(4)-based nanomaterials.

Publication types

  • Review