Hybrid Quantum Computing with Conditional Beam Splitter Gate in Trapped Ion System

Phys Rev Lett. 2020 May 1;124(17):170502. doi: 10.1103/PhysRevLett.124.170502.

Abstract

The hybrid approach to quantum computation simultaneously utilizes both discrete and continuous variables, which offers the advantage of higher density encoding and processing powers for the same physical resources. Trapped ions, with discrete internal states and motional modes that can be described by continuous variables in an infinite-dimensional Hilbert space, offer a natural platform for this approach. A nonlinear gate for universal quantum computing can be implemented with the conditional beam splitter Hamiltonian |e⟩⟨e|(a[over ^]^{†}b[over ^]+a[over ^]b[over ^]^{†}) that swaps the quantum states of two motional modes, depending on the ion's internal state. We realize such a gate and demonstrate its applications for quantum state overlap measurements, single-shot parity measurement, and generation of NOON states.