Adaptive Incremental Mixture Markov Chain Monte Carlo

J Comput Graph Stat. 2019;28(4):790-805. doi: 10.1080/10618600.2019.1598872. Epub 2019 Jun 7.

Abstract

We propose adaptive incremental mixture Markov chain Monte Carlo (AIMM), a novel approach to sample from challenging probability distributions defined on a general state-space. While adaptive MCMC methods usually update a parametric proposal kernel with a global rule, AIMM locally adapts a semiparametric kernel. AIMM is based on an independent Metropolis-Hastings proposal distribution which takes the form of a finite mixture of Gaussian distributions. Central to this approach is the idea that the proposal distribution adapts to the target by locally adding a mixture component when the discrepancy between the proposal mixture and the target is deemed to be too large. As a result, the number of components in the mixture proposal is not fixed in advance. Theoretically, we prove that there exists a stochastic process that can be made arbitrarily close to AIMM and that converges to the correct target distribution. We also illustrate that it performs well in practice in a variety of challenging situations, including high-dimensional and multimodal target distributions. Finally, the methodology is successfully applied to two real data examples, including the Bayesian inference of a semiparametric regression model for the Boston Housing dataset. Supplementary materials for this article are available online.

Keywords: Adaptive MCMC; Bayesian inference; Importance weight; Independence sampler; Local adaptation.