Microfluidic fabrication of alendronate-loaded chitosan nanoparticles for enhanced osteogenic differentiation of stem cells

Life Sci. 2020 Aug 1:254:117768. doi: 10.1016/j.lfs.2020.117768. Epub 2020 May 11.

Abstract

Aims: In this study, we used a cross-junction microfluidic device for preparation of alendronate-loaded chitosan nanoparticles with desired characteristics to introduce a suitable element for bone tissue engineering scaffolds.

Main methods: By controlling the reaction condition in microfluidic device, six types of alendronate-loaded chitosan nanoparticles were fabricated which had different physical properties. Hydrodynamic diameter of synthetized particles was evaluated by dynamic light scattering (102 to 215 nm). Nanoparticle morphology was determined by SEM and AFM images. The osteogenic effects of prepared selected nanoparticles on human adipose stem cells (hA-MSCs) were evaluated by assessment of alkaline phosphatase (ALP) activity, calcium deposition, ALP and osteopontin gene expression.

Key findings: The highest loading efficiency percentage (%LE) was %32.42 ± 2.02. Based on MTT assessment, two samples which had no significant cytotoxicity were chosen for further studies (particle sizes and %LE were 142 ± 6.1 nm, 198 ± 16.56 nm, %16.76 ± 3.91 and %32.42 ± 2.02, respectively). In vitro release behavior of nanoparticles displayed pH responsive characteristics. Significant faster release was seen in acidic pH = 5.8 than neutral pH = 7.4. The selected nanoparticles demonstrated higher ALP activity at 14 days in comparison to selected blank sample and osteogenic differentiation media (ODM) and a downregulation at 21 days in comparison to 14 days. Calcium content assay at 21 days displayed significant differences between alendronate-loaded nanoparticles and ODM. ALP and osteopontin mRNA expression was significantly higher than the cells cultured in ODM at 14 and 21 days.

Significance: We concluded that our prepared nanoparticles significantly enhanced osteogenic differentiation of hA-MSCs and can be a suitable compartment of bone tissue engineering scaffolds.

Keywords: Alendronate; Mesenchymal stem cells; Microfluidic; Nanoparticle; Osteogenic differentiation.

MeSH terms

  • Adipocytes
  • Alendronate / metabolism*
  • Animals
  • Bone Regeneration / drug effects
  • Bone and Bones
  • Cell Differentiation / drug effects
  • Cell Proliferation / drug effects
  • Cells, Cultured
  • Chitosan / metabolism
  • Humans
  • Mesenchymal Stem Cells / drug effects
  • Microfluidics / methods
  • Nanoparticles
  • Osteogenesis / drug effects*
  • Stem Cells / drug effects
  • Tissue Engineering / instrumentation*
  • Tissue Engineering / methods
  • Tissue Scaffolds

Substances

  • Chitosan
  • Alendronate