Few-optical-cycle pulse generation based on a non-linear fiber compressor pumped by a low-energy Yb:CALGO ultrafast laser

Opt Express. 2020 Apr 27;28(9):13714-13720. doi: 10.1364/OE.388691.

Abstract

Pulse compression in a short, normal dispersion photonic-crystal fiber is investigated with a Yb:CaGdAlO4 laser pumped by a low-power fiber-coupled single-mode diode that delivers 70-fs pulses at 1050 nm central wavelength, with 45-mW average power at 60 MHz repetition rate. A simple and power-efficient compressor based on a ∼15-cm long, low-cost commercial nonlinear fiber, with normal dispersion at the laser wavelength, produces pulses as short as 14.9 fs, corresponding to ∼4.25 optical cycles, with 29 mW average power after a prism-pair compressor in double pass configuration. Pulse quality was investigated with frequency resolved optical gating (FROG) analysis. Furthermore, a comparative analysis of noise properties of the oscillator, pump laser and compressed pulses has been performed.