Broadening frequency response of a distributed sparse-wideband vibration sensing via a time-division multi-frequency sub-Nyquist sampling

Opt Express. 2020 May 11;28(10):14237-14245. doi: 10.1364/OE.390208.

Abstract

The maximum detectable vibration frequency response range is inversely related with the sensing fiber length in direct-detection intensity-measuring coherent optical time domain reflectometry (DI-COTDR). Unlike the conventional uniform sampling, the pulse repetition rate is modulated in a time-division manner so that a multi-frequency sub-Nyquist sampling is realized along every point of the sensing fiber. A 24-kHz vibration signal can be detected and recovered by a compressive sensing technique using sampling pulses with repetition rate lower than 5-kHz, which is ten-fold lower compared to that required in the conventional uniform sampling method. Also, a multi-frequency vibration signal can be identified and recovered by this technique. The proposed method can break through the theoretical maximum detection frequency of traditional systems without any hardware modification. Therefore, such a method is of great significance for broadening the frequency response range of the distributed sparse-wideband vibration sensing.