Studies on carbon-quantum-dot-embedded iron oxide nanoparticles and their electrochemical response

Nanotechnology. 2020 Aug 28;31(35):355502. doi: 10.1088/1361-6528/ab925e. Epub 2020 May 12.

Abstract

A report on the synthesis of carbon-quantum-dot-embedded iron oxide nanoparticles (CQD@Fe3O4NPs) and their improved electrochemical studies is presented. Fe3O4NPs and CQD@Fe3O4NPs were synthesized by the wet-chemical co-precipitation method. X-ray diffraction measurements exhibited pure cubic phase with Fd3m space group in Fe3O4NPs and CQD@Fe3O4NPs. Fourier-transform infrared spectroscopy measurements confirmed the functionalization of Fe3O4NPs with CQDs. Dynamic light scattering measurements revealed a hydrodynamic radius of 520 nm and 319 nm for Fe3O4NPs and CQD@Fe3O4NPs, respectively. Moreover, zeta potential measurements showed positively charged Fe3O4NPs and negatively charged CQD@Fe3O4NPs. High-resolution transmission electron microscopy measurements showed nearly spherical structure with an average size of around 7 nm for Fe3O4 in both samples, whereas CQDs were nearly 2 nm in size in CQD@Fe3O4NPs. A biocompatibility study showed that CQD@Fe3O4NPs were more biocompatible than the bare Fe3O4NPs. CQD@Fe3O4NPs were then dispersed in chitosan (CHIT) solution, and drop-casted onto an indium tin oxide (ITO) glass substrate for further study. Atomic force microscopy results showed improved surface roughness of the CQD@Fe3O4-CHIT/ITO electrode, providing a better biosensing platform. The electrochemical response studies of CQD@Fe3O4-CHIT/ITO also showed enhanced electrochemical signal compared to Fe3O4-CHIT/ITO electrodes. Thus, a CQD@Fe3O4-CHIT/ITO electrode was used for the detection of vitamin D2 (10-100 ng ml-1) using a differential pulse voltammetry technique. The sensitivity and limit of detection were obtained as 0.069 µA ng-1 ml cm-2 and 2.46 ng ml-1, respectively.