A novel dry-blending method to reduce the coefficient of thermal expansion of polymer templates for OTFT electrodes

Beilstein J Nanotechnol. 2020 Apr 20:11:671-677. doi: 10.3762/bjnano.11.53. eCollection 2020.

Abstract

Among the patterning technologies for organic thin-film transistors (OTFTs), the fabrication of OTFT electrodes using polymer templates has attracted much attention. However, deviations in the electrode alignment occur because the coefficient of thermal expansion (CTE) of the polymer template is much higher than the CTE of the dielectric layer. Here, a novel dry-blending method is described in which SiO2 nanoparticles are filled into a grooved silicon template, followed by permeation of polydimethylsiloxane (PDMS) into the SiO2 nanoparticle gaps. The SiO2 nanoparticles in the groove are extracted by curing and peeling off PDMS to prepare a PDMS/SiO2 composite template with a nanoparticle content of 83.8 wt %. The composite template has a CTE of 96 ppm/°C, which is a reduction by 69.23% compared with the original PDMS template. Finally, we achieved the alignment of OTFT electrodes using the composite template.

Keywords: OTFT electrodes; PDMS/SiO2 composite template; coefficient of thermal expansion; dry blending; organic thin-film transistors (OTFTs).

Grants and funding

This work was funded by the National Natural Science Foundation of China (Grant No. 51475353), the Tribology Science Fund of the State Key Laboratory of Tribology (Grant No. SKLTKF14A02), the Natural Science Basic Research Program of Shaanxi Province (Grant No. 2016JM5004), and the Key Laboratory of the Shaanxi Provincial Department of Education (Grant No. 16JS057).