Modeling the impact of 2D/3D urban indicators on the urban heat island over different seasons: A boosted regression tree approach

J Environ Manage. 2020 Jul 15:266:110424. doi: 10.1016/j.jenvman.2020.110424. Epub 2020 Apr 29.

Abstract

Understanding how complex urban factors affect the Urban Heat Island (UHI) is crucial for assessing the impacts of urban planning and environmental management on the thermal environment. This paper investigates the relationships between two-dimensional (2D) and three-dimensional (3D) factors and land surface temperatures (LST) within the Olympic Area of Beijing in different seasons, using the boosted regression tree (BRT) model. The BRT model captures the specific contributions of each urban factor to LST in each season and across a continuum of magnitudes for this factor. The results show that these relationships are complex and highly nonlinear. The four most common dominant factors are the Normalized Difference Built-up Index (NDBI), the Normalized Difference Vegetation Index (NDVI), a gravity index for parks (GPI), and average building height (BH). The most important factor in spring is NDBI, with a 45.5% contribution rate. In the other seasons, NDVI is the dominant factor, with contributions of 40% in summer, 21% in autumn, and 19% in winter. NDVI has an overall negative impact on LST in spring and summer, with a quadratic nonlinear decreasing curve, but a positive one in autumn and winter. The 2D land-use variables are most strongly related to LST in summer and spring, but 3D building-related variables have stronger impacts in colder weather. The Sky View Factor (SVF), a 3D measure of urban morphology, has also strong impacts in summer and winter. Both a building-based and a DSM-based SVFs are computed. The latter accounts for buildings, bridges, and trees. In contrast to a building-based SVF, the DSM-based SVF reduces LST when it varies between 0 and 0.75, reflecting the effects of high-density tree canopies that increase shades and evapotranspiration while blocking sky view. The marginal effect curves produced by the BRT are often characterized by thresholds. For instance, the maximal NDVI effect in summer takes place when NDVI = 0.7, suggesting that a very intense green coverage is not necessary to achieve maximal thermal results. Implications for urban planning and environmental management are outlined, including the increased use of evergreen trees that provide thermal benefits in both summer and winter.

Keywords: Boosted regression trees; Different seasons; Land surface temperatures; Multi-dimensional urban factors; Urban heat island.

MeSH terms

  • Beijing
  • Cities
  • Environmental Monitoring*
  • Hot Temperature*
  • Islands
  • Seasons