Phonon-Induced Ratchet Motion of a Water Nanodroplet on a Supported Black Phosphorene

J Phys Chem Lett. 2020 Jun 4;11(11):4298-4304. doi: 10.1021/acs.jpclett.0c01179. Epub 2020 May 15.

Abstract

Phonons are not supposed to carry any physical momentum as lattice vibrational modes; thus, it is believed no mass transport could be induced by phonons. In this Letter, we show that a ratchet motion of a water nanodroplet could be induced on a two-dimensional puckered lattice like black phosphorene (BP) by exciting its flexural phonons through a moving substrate. The water nanodroplet exhibits a forward motion along the armchair or a backward motion along the zigzag directions on a BP lattice that is supported on a substrate possessing a relative armchair or zigzag forward motion with BP. Through the analysis of the structure and vibrational density states of BP, it is found that in-plane lattice displacement asymmetry and the in-plane vibration asymmetry are induced by the excited flexural phonons, which determine the water nanodroplet motion as an anisotropic Brownian motor. Simulations of the nanodroplet motion as functions of the substrate relative motion speed and direction and also the substrate coupling strength with BP are performed. Results of the nanodroplet ratchet motion exhibit good agreement with the theoretical predications from calculating the Brownian motor asymmetry. Our findings reveal a promising mass transport strategy and a further understanding of phonon-related interactions in crystalline solids.