The Prebiotic Provenance of Semi-Aqueous Solvents

Orig Life Evol Biosph. 2020 Jun;50(1-2):1-14. doi: 10.1007/s11084-020-09595-9. Epub 2020 May 9.

Abstract

The numerous and varied roles of phosphorylated organic molecules in biochemistry suggest they may have been important to the origin of life. The prominence of phosphorylated molecules presents a conundrum given that phosphorylation is a thermodynamically unfavorable, endergonic process in water, and most natural sources of phosphate are poorly soluble. We recently demonstrated that a semi-aqueous solvent consisting of urea, ammonium formate, and water (UAFW) supports the dissolution of phosphate and the phosphorylation of nucleosides. However, the prebiotic feasibility and robustness of the UAFW system are unclear. Here, we study the UAFW system as a medium in which phosphate minerals are potentially solubilized. Specifically, we conduct a series of chemical experiments alongside thermodynamic models that simulate the formation of ammonium formate from the hydrolysis of hydrogen cyanide, and demonstrate the stability of formamide in such solvents (as an aqueous mixture). The dissolution of hydroxylapatite requires a liquid medium, and we investigate whether a UAFW system is solid or liquid over varied conditions, finding that this characteristic is controlled by the molar ratios of the three components. For liquid UAFW mixtures, we also find the solubility of phosphate is higher when the quantity of ammonium formate is greater than urea. We suggest the urea within the system can lower the activity of water, help create a stable and persistent solution, and may act as a condensing agent/catalyst to improve nucleoside phosphorylation yields.

Keywords: Condensation; Formamide; Formate; HCN; Origin of life; Phosphorus; Urea.

MeSH terms

  • Evolution, Planetary
  • Formates / chemistry*
  • Origin of Life*
  • Phosphorylation
  • Solubility
  • Solvents / chemistry*
  • Thermodynamics
  • Urea / chemistry*
  • Water / chemistry*

Substances

  • Formates
  • Solvents
  • Water
  • formic acid
  • Urea