Multi-information fusion neural networks for arrhythmia automatic detection

Comput Methods Programs Biomed. 2020 Sep:193:105479. doi: 10.1016/j.cmpb.2020.105479. Epub 2020 Apr 29.

Abstract

Background and objectives: . The electrocardiograms (ECGs) are widely used to diagnose a variety of arrhythmias. Generally, the abnormalities of ECG signals mainly consist of ill-shaped ECG beat morphologies and irregular intervals. The ill-shaped ECG beat morphologies represent morphological information, while the irregular intervals denote the temporal information of ECG signals. But it is difficult to utilize morphological information and temporal information simultaneously when dealing with single ECG heartbeats, because RR interval is not contained in a single short heartbeat. Therefore, to handle this problems, a novel Multi-information Fusion Convolutional Bidirectional Recurrent Neural Network (MF-CBRNN) is proposed for arrhythmia automatic detection.

Methods: . The MF-CBRNN is designed with two parallel hybrid branches that can simultaneously focus on the beat-based information in the ECG beats and the segment-based information in the adjacent segments of the beats. A single ECG beat provides the morphological information. At the same time, the adjacent segment of the ECG beat enriches the temporal information, so the two branches are designed to exploit the multiple information contained in ECGs. Furthermore, a combination of convolutional neural networks (CNNs) and a bidirectional long short memory (BLSTM) in each branch is utilized to capture the information from the two inputs. And all the features extracted from the two branches are fused for information aggregation.

Results: . To evaluate the performance of the proposed model, the ECG signals from MIT-BIH databases are used for intra-patient and inter-patient paradigms. The proposed model yields an accuracy of 99.56% and an F1-score of 96.40% under the intra-patient paradigm. And it obtains an overall accuracy of 96.77% and F1-score of 77.83% under the inter-patient paradigm.

Conclusions: . Compared with other studies on arrhythmia detection, our method achieves a state-of-the-art performance. It indicates that the proposed model is a promising arrhythmia detection algorithm for computer-aided diagnostic systems.

Keywords: Arrhythmia; Bidirectional long short term memory (BLSTM); Convolutional neural network (CNN); Electrocardiogram (ECG); Multi-information fusion.

MeSH terms

  • Algorithms
  • Arrhythmias, Cardiac* / diagnosis
  • Electrocardiography
  • Humans
  • Neural Networks, Computer
  • Signal Processing, Computer-Assisted*