Structural characterization and biological activities of a novel polysaccharide containing N-acetylglucosamine from Ganoderma sinense

Int J Biol Macromol. 2020 May 6:S0141-8130(20)33174-3. doi: 10.1016/j.ijbiomac.2020.05.028. Online ahead of print.

Abstract

A novel homogeneous heteropolysaccharide (GSPB70-S) with a molecular weight of 2.87 kDa was isolated from Ganoderma sinense. Structural analysis showed that GSPB70-S was composed of glucose, glucosamine, mannose, and galactose with a molar ratio of 12.90:3.70:2.26:1.00. The repeating structure units of GSPB70-S were characterized by the combined application of chemical methods and nuclear magnetic resonance. GSPB70-S contains a backbone of →3)-β-D-Glcp-(1 → 4)-α-D-GlcpNAc-(1 → 4)-α-D-Manp-(1 → 3)-β-D-Glcp-(1→, with branches of β-D-Glcp-(1→, α-D-GlcpNAc-(1 → and →4)-α-D-Galp-(1→. Scanning electron microscope (SEM) showed that GSPB70-S presented a long strip shape with different thicknesses, and there were many lamellar substances on the surface. Biological research showed that GSPB70-S inhibited the activity of α-glucosidase in vitro, increased the viability of RAW 264.7 macrophages, and promoted the release of NO. In addition, GSPB70-S showed good abilities to scavenge free radicals.

Keywords: Biological activities; Ganoderma sinense; Heteropolysaccharide; Structure characterization.