Preparation of Tri(alkenyl)functional Open-Cage Silsesquioxanes as Specific Polymer Modifiers

Polymers (Basel). 2020 May 6;12(5):1063. doi: 10.3390/polym12051063.

Abstract

The scientific reports on polyhedral oligomeric silsesquioxanes are mostly focused on the formation of completely condensed T8 cubic type structures and recently so-called double-decker derivatives. Herein, we report on efficient synthetic routes leading to trifunctionalized, open-cage silsesquioxanes with alkenyl groups of varying chain lengths from -vinyl to -dec-9-enyl and two types of inert groups (iBu, Ph) at the silsesquioxane core. The presented methodology was focused on hydrolytic condensation reaction and it enabled obtaining titled compounds with high yields and purity. A parallel synthetic methodology that was based on the hydrosilylation reaction was also studied. Additionally, a thorough characterization of the obtained compounds was performed, also in terms of their thermal stability, melting and crystallization temperatures (TGA and DSC) in order to show the changes in the abovementioned parameters dependent on the type of reactive as well as inert groups at Si-O-Si core. The presence of unsaturated alkenyl groups has a profound impact on the application potential of these systems, i.e., as modifiers or comonomers for copolymerization reaction.

Keywords: hydrolytic condensation; open-cage silsesquioxanes; thermal analysis.