Rapid Detection of SARS-CoV-2 by Low Volume Real-Time Single Tube Reverse Transcription Recombinase Polymerase Amplification Using an Exo Probe with an Internally Linked Quencher (Exo-IQ)

Clin Chem. 2020 Aug 1;66(8):1047-1054. doi: 10.1093/clinchem/hvaa116.

Abstract

Background: The current outbreak of SARS-CoV-2 has spread to almost every country with more than 5 million confirmed cases and over 300,000 deaths as of May 26, 2020. Rapid first-line testing protocols are needed for outbreak control and surveillance.

Methods: We used computational and manual designs to generate a suitable set of reverse transcription recombinase polymerase amplification (RT-RPA) primer and exonuclease probe, internally quenched (exo-IQ), sequences targeting the SARS-CoV-2 N gene. RT-RPA sensitivity was determined by amplification of in vitro transcribed RNA standards. Assay selectivity was demonstrated with a selectivity panel of 32 nucleic acid samples derived from common respiratory viruses. To validate the assay against full-length SARS-CoV-2 RNA, total viral RNA derived from cell culture supernatant and 19 nasopharyngeal swab samples (8 positive and 11 negative for SARS-CoV-2) were screened. All results were compared to established RT-qPCR assays.

Results: The 95% detection probability of the RT-RPA assay was determined to be 7.74 (95% CI: 2.87-27.39) RNA copies per reaction. The assay showed no cross-reactivity to any other screened coronaviruses or respiratory viruses of clinical significance. The developed RT-RPA assay produced 100% diagnostic sensitivity and specificity when compared to RT-qPCR (n = 20).

Conclusions: With a run time of 15 to 20 minutes and first results being available in under 7 minutes for high RNA concentrations, the reported assay constitutes one of the fastest nucleic acid based detection methods for SARS-CoV-2 to date and may provide a simple-to-use alternative to RT-qPCR for first-line screening at the point of need.

MeSH terms

  • Betacoronavirus / genetics*
  • Betacoronavirus / isolation & purification
  • COVID-19
  • Coronavirus Infections / diagnosis*
  • Coronavirus Infections / virology
  • DNA Probes / chemistry
  • DNA Probes / metabolism
  • Exonucleases / metabolism
  • Humans
  • Nucleic Acid Amplification Techniques / methods*
  • Pandemics
  • Pneumonia, Viral / diagnosis*
  • Pneumonia, Viral / virology
  • Point-of-Care Testing
  • RNA, Viral / metabolism*
  • Real-Time Polymerase Chain Reaction
  • SARS-CoV-2
  • Sensitivity and Specificity

Substances

  • DNA Probes
  • RNA, Viral
  • Exonucleases