Combined Application of Albumin-Binding [177Lu]Lu-PSMA-ALB-56 and Fast-Cleared PSMA Inhibitors: Optimization of the Pharmacokinetics

Mol Pharm. 2020 Jun 1;17(6):2044-2053. doi: 10.1021/acs.molpharmaceut.0c00199. Epub 2020 May 8.

Abstract

The strategy of using radioligands for targeting the prostate-specific membrane antigen (PSMA) revealed to be promising for the treatment of metastatic castration-resistant prostate cancer (mCRPC). Recently developed albumin-binding PSMA radioligands showed a remarkably increased tumor uptake because of the enhanced blood circulation, but higher accumulation of activity was also observed in off-target organs and tissues. The aim of this study was to investigate the option of using fast-cleared, small-molecular-weight PSMA inhibitors (PSMA-11, 2-PMPA, and ZJ-43) to reduce the kidney uptake of [177Lu]Lu-PSMA-ALB-56, a previously developed albumin-binding PSMA radioligand. Dual-isotope SPECT/CT imaging was performed with tumor-bearing mice coinjected with [177Lu]Lu-PSMA-ALB-56 and a 2.5-fold molar excess of [67Ga]Ga-PSMA-11. At early timepoints after injection, the high renal uptake of [67Ga]Ga-PSMA-11 reduced the accumulation of [177Lu]Lu-PSMA-ALB-56 in the kidneys substantially, whereas the tumor uptake of [177Lu]Lu-PSMA-ALB-56 was only slightly affected. These findings were confirmed in biodistribution studies, which revealed reduced uptake of [177Lu]Lu-PSMA-ALB-56 in the kidneys due to coadministered unlabeled PSMA-11 (9.1 ± 0.8% IA/g vs 46 ± 11% IA/g; 1 h p.i.). The tumor uptake of [177Lu]Lu-PSMA-ALB-56 was almost the same at 1 h p.i., irrespective of whether or not PSMA-11 was coinjected (24 ± 6% IA/g vs 27 ± 7% IA/g). The application of [177Lu]Lu-PSMA-ALB-56 with 2-PMPA or ZJ-43, respectively, showed similar results in biodistribution studies. Among all three tested PSMA inhibitors, 2-PMPA, applied at a 2.5-fold molar excess relative to [177Lu]Lu-PSMA-ALB-56, was most effective to improve the tumor-to-kidney ratios over the first hours after injection of [177Lu]Lu-PSMA-ALB-56. The concept of using a PSMA inhibitor together with [177Lu]Lu-PSMA-ALB-56 appears promising in view of a clinical translation of this and possibly other long-circulating PSMA radioligands.

Keywords: 2-PMPA; [177Lu]Lu-PSMA-ALB-56; albumin binder; dual-isotope SPECT imaging; kidney uptake; prostate cancer.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Line, Tumor
  • Humans
  • Kidney / metabolism
  • Male
  • Organophosphorus Compounds / chemistry*
  • Organophosphorus Compounds / pharmacokinetics*
  • Prostatic Neoplasms / metabolism*
  • Single Photon Emission Computed Tomography Computed Tomography

Substances

  • 2-(phosphonomethyl)pentanedioic acid
  • Organophosphorus Compounds