Experimental Data on design, theoretical and correlation of the electronic and optical properties of diethynylphenylthiophene as photovoltaic materials

Data Brief. 2020 Apr 23:30:105579. doi: 10.1016/j.dib.2020.105579. eCollection 2020 Jun.

Abstract

The article show the date associated with the work previously reported "Design, theoretical and correlation of the electronic and optical properties of diethynylphenylthiophene as photovoltaic materials", https://doi.org/10.1016/j.molstruc.2019.127093[1]. The authors reported graphics and tables building from of p-PDT, m-PDT, o-PDT, p-ZnPDT, m -ZnPDT and o-ZnPDT calculations as raw date, with the aim of to show electronic and optical properties, which can be analyzed by the reader. In this context, there exists an important number of renewable energies that are substituting the oil and the charcoal be used in the energetic supply. One of these alternatives is the use of solar cells, which can be use in diverse areas like telecommunications, remote systems of monitoring, lighting systems, water treatment systems, and products of consumption. The employment of the organic photovoltaic technology and photosensitized organic materials are based on the use of molecular organic materials for coverings for ceiling and windows of a house that allow the storage of energy. The OPVs and DSSC present π conjugated systems, giving them a high electronic relocated density, which allows catching the radiations with an energy range of wavelengths between 400 and 800 nm. The systems are derived of diethynylphenylthiophene (LMWOM) coupled to phenyldiamine (PD) as spacer, forming hyper conjugated macrocycles (p-PDT, m-PDT, o-PDT, p-ZnPDT, m -ZnPDT and o-ZnPDT). On the other hand, it is reported process electronic relationship with material sensitized and the bibliographic support of the publication topic.

Keywords: Acceptor- donor structure; Photosensitized materials; Solar applications.