Urinary Pharmacokinetic and Pharmacodynamic Profiles of Fosfomycin against Extended-Spectrum β-Lactamase-Producing Escherichia coli with Canine Ex Vivo Modeling: A Pilot Study

Antibiotics (Basel). 2020 May 5;9(5):230. doi: 10.3390/antibiotics9050230.

Abstract

Fosfomycin is a candidate drug for extended-spectrum β-lactamase (ESBL)-producing bacteria, but its efficacy is yet to be investigated in dogs. This study investigated the urinary pharmacokinetic/pharmacodynamic (PK/PD) profile of fosfomycin orally administered at 80 mg/kg to six healthy dogs to assess its efficacy for canine urinary tract infections (UTIs) caused by ESBL-producing bacteria. Four strains of ESBL-producing Escherichia coli (ESBL-EC) characterized by fosfomycin minimum inhibitory concentrations (MICs) of 0.5, 1, 2, and 32 µg/mL were used. Urine samples for the measurement of urinary drug concentrations and urinary bactericidal titers (UBTs) were obtained after drug administration. The urinary concentrations (µg/mL, mean ± SE) were 1348.2 ± 163.5, 1191.6 ± 260.2, and 661.1 ± 190.4 at 0-4, 4-8, and 8-12 h, respectively, after drug administration. The mean urinary area under the curve during the test period (AUC0-12) of fosfomycin was estimated to be 12,803.8 µg·h/mL. The UBTs for all tested strains fluctuated closely with urine concentration during the test period (r = 0.944-1.000), and the area under the UBT-versus-time curve correlated with the urinary AUC/MIC of each strain (r = 0.991). According to the optimal urinary PK/PD target value, fosfomycin at 80 mg/kg twice daily may be suitable for the treatment of canine UTIs caused by ESBL-EC presenting MIC ≤ 128 µg/mL.

Keywords: dogs; ex vivo model; extended-spectrum β-lactamase-producing bacteria; fosfomycin; urinary tract infection.