Degradation of nitrogen-containing refractory organic wastewater using a novel alternating-anode electrochemical system

Sci Total Environ. 2019 Dec 20:697:134161. doi: 10.1016/j.scitotenv.2019.134161. Epub 2019 Aug 30.

Abstract

This study presented a novel alternating-anode electrochemical system (AAES) based on single electrolytic cell for the treatment of nitrogen-containing refractory organic wastewater (NOW). The core of AAES lies in the alternating working of iron anode and DSA anode to integrate different electrochemical processes. The biologically treated landfill leachate (BTLL) was selected as a practical NOW for assessing the performance of AAES. The results indicated that after 140 min of electrolytic reaction, the removal efficiency of chemical oxygen demand and total nitrogen (TN) using AAES was found to be 76.9 and 98.9%, respectively. The main component of dissolved organic matter (DOM) in BTLL included humic-like substances, which could be degraded into small-molecule DOM, such as fulvic-like substances and protein-like substances, by available chlorine and hydroxyl radicals present in AAES. Cathode reduction (NOx--N → NH4+-N and N2) under iron anode and indirect oxidation (NH4+-N → N2) under DSA anode were the main pathways to remove TN from NOW. Owing to the redox conditions created by the alternating anodes, the main stable crystalline forms of precipitates obtained from AAES were Fe3O4 and γ-Fe2O3, which could be separated by using the external magnetic field. The findings of this study may provide a feasible solution for the advanced electrochemical treatment of NOW in a single electrolytic cell as well as rapid separation of precipitates.

Keywords: Alternating-anode electrochemical system; Biologically treated landfill leachate; Magnetic precipitates formation; Precipitates separation; Total nitrogen.