Electrical scattering mechanism evolution in un-doped and halogen-doped Bi2O2Se single crystals

J Phys Condens Matter. 2020 May 7;32(36):365705. doi: 10.1088/1361-648X/ab913f. Online ahead of print.

Abstract

Recently the layered oxide semiconductor Bi2O2Se was hotly explored for its ultrahigh mobility and ultrafast photo-response whose physical origins need to be further explored or elucidated. Here, we have grown halogen (Cl, Br, I) doped and un-doped Bi2O2Se single crystals by a melt-solidification method. Comparative electrical transport characterizations and detailed data-analysis substantiate that the electron-electron scattering is the major source of resistivity in un-doped Bi2O2Se crystals; however, in halogen-doped Bi2O2Se crystals, electron-electron scattering is only effective at low temperature (<60 K) and subsequently electron-phonon-interaction scattering is dominated to resistivity. Hall measurement and analysis show that electron concentration of halogen-doped Bi2O2Se (∼1020 cm-3) is one-order higher than un-doped one (∼1019 cm-3), but the carrier mobility of halogen-doped Bi2O2Se at 2 K (∼102 cm2 V-1 s-1) is reduced by more than two orders than un-doped ones (∼104 cm2 V-1 s-1). Three kinds of relaxation time (due to the impurity scattering, electron-electron scattering and electron-phonon scattering), calculated by linear-response theory and electron-/phonon-dispersion, are in agreement with experimental results quantitatively. The scattering mechanism evolution from sole electron-electron scattering (un-doped Bi2O2Se) to electron-phonon scattering (doped Bi2O2Se) at high temperature (>60 K) is attributed to the net effect of decreased screened Coulomb-interaction and increased Fermi energy in halogen-doped Bi2O2Se. This work may provide clues of physical origins of superior electrical/photoelectrical properties of Bi2O2Se.