Neuropeptide Y Expression Defines a Novel Class of GABAergic Projection Neuron in the Inferior Colliculus

J Neurosci. 2020 Jun 10;40(24):4685-4699. doi: 10.1523/JNEUROSCI.0420-20.2020. Epub 2020 May 6.

Abstract

Located in the midbrain, the inferior colliculus (IC) integrates information from numerous auditory nuclei and is an important hub for sound processing. Despite its importance, little is known about the molecular identity and functional roles of defined neuron types in the IC. Using a multifaceted approach in mice of both sexes, we found that neuropeptide Y (NPY) expression identifies a major class of inhibitory neurons, accounting for approximately one-third of GABAergic neurons in the IC. Retrograde tracing showed that NPY neurons are principal neurons that can project to the medial geniculate nucleus. In brain slice recordings, many NPY neurons fired spontaneously, suggesting that NPY neurons may drive tonic inhibition onto postsynaptic targets. Morphologic reconstructions showed that NPY neurons are stellate cells, and the dendrites of NPY neurons in the tonotopically organized central nucleus of the IC cross isofrequency laminae. Immunostaining confirmed that NPY neurons express NPY, and we therefore hypothesized that NPY signaling regulates activity in the IC. In crosses between Npy1rcre and Ai14 Cre-reporter mice, we found that NPY Y1 receptor (Y1R)-expressing neurons are glutamatergic and were broadly distributed throughout the rostrocaudal extent of the IC. In whole-cell recordings, application of a high-affinity Y1R agonist led to hyperpolarization in most Y1R-expressing IC neurons. Thus, NPY neurons represent a novel class of inhibitory principal neurons that are well poised to use GABAergic and NPY signaling to regulate the excitability of circuits in the IC and auditory thalamus.SIGNIFICANCE STATEMENT The identification of neuron types is a fundamental question in neuroscience. In the inferior colliculus (IC), the hub of the central auditory pathway, molecular markers for distinct classes of inhibitory neurons have remained unknown. We found that neuropeptide Y (NPY) expression identifies a class of GABAergic principal neurons that constitute one-third of the inhibitory neurons in the IC. NPY neurons fire spontaneously, have a stellate morphology, and project to the auditory thalamus. Additionally, we found that NPY signaling hyperpolarized the membrane potential of a subset of excitatory IC neurons that express the NPY Y1 receptor. Thus, NPY neurons are a novel class of inhibitory neurons that use GABA and NPY signaling to regulate activity in the IC and auditory thalamus.

Keywords: GABAergic; Y1 receptor; auditory; inferior colliculus; neuropeptide Y; projection neuron.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • GABAergic Neurons / metabolism*
  • Inferior Colliculi / metabolism*
  • Membrane Potentials / physiology
  • Mice
  • Mice, Transgenic
  • Neural Inhibition / physiology*
  • Neural Pathways / metabolism
  • Neuropeptide Y / metabolism*
  • Receptors, Neuropeptide Y / metabolism*

Substances

  • Neuropeptide Y
  • Npy1r protein, mouse
  • Receptors, Neuropeptide Y