Zr(IV) Coordination Chemistry for Cell-Repellent Alginate Coatings: The Effect of Surface Functional Groups

Langmuir. 2020 May 19;36(19):5192-5197. doi: 10.1021/acs.langmuir.0c00471. Epub 2020 May 6.

Abstract

Surface modification using alginic acid and its salt, alginate (Alg), has attracted much attention owing to its potential applications in various fields, including tissue engineering, drug delivery, antiplatelet surface preparation, and energy-storage technologies. In these applications, efficient immobilization of Alg on the solid surface is required because the delamination of the surface-bound Alg eventually leads to a significant decrease in its function. Therefore, much effort has been made to introduce Alg onto solid surfaces in a stable manner. Despite recent advances, existing methods for immobilizing Alg on surfaces have some limitations: (i) derivatization of Alg is typically also required and (ii) these methods only function under specific reaction conditions. Herein, we report a Zr(IV)-mediated strategy to immobilize Alg on solid surfaces. We demonstrate efficient Alg grafting onto carboxyl-, catechol-, polydopamine-, and tannic acid-functionalized surfaces via Zr(IV)-mediated cross-linking reactions. This strategy yields Alg multilayers that suppress fibroblast and platelet adhesion onto the solid surfaces. Furthermore, we show that the Alg multilayers can be selectively constructed on specific sites of solid surfaces. Given its ease of use and the wide selection of available carboxyl polymers, the current strategy is expected to be a useful tool for preparing functional polymer films for various applications.

Publication types

  • Research Support, Non-U.S. Gov't