Computational and Spectroscopic Characterization of the Photocycle of an Artificial Rhodopsin

J Phys Chem Lett. 2020 Jun 4;11(11):4245-4252. doi: 10.1021/acs.jpclett.0c00751. Epub 2020 May 13.

Abstract

The photocycle of a reversible photoisomerizing rhodopsin mimic (M2) is investigated. This system, based on the cellular retinoic acid binding protein, is structurally different from natural rhodopsin systems, but exhibits a similar isomerization upon light irradiation. More specifically, M2 displays a 15-cis to all-trans conversion of retinal protonated Schiff base (rPSB) and all-trans to 15-cis isomerization of unprotonated Schiff base (rUSB). Here we use hybrid quantum mechanics/molecular mechanics (QM/MM) tools coupled with transient absorption and cryokinetic UV-vis spectroscopies to investigate these isomerization processes. The results suggest that primary rPSB photoisomerization of M2 occurs around the C13═C14 double bond within 2 ps following an aborted-bicycle pedal (ABP) isomerization mechanism similar to natural microbial rhodopsins. The rUSB isomerization is much slower and occurs within 48 ps around the C15═N double bond. Our findings reveal the possibility to engineer naturally occurring mechanistic features into artificial rhodopsins and also constitute a step toward understanding the photoisomerization of UV pigments. We conclude by reinforcing the idea that the presence of the retinal chromophore inside a tight protein cavity is not mandatory to exhibit ABP mechanism.

MeSH terms

  • Isomerism
  • Light
  • Quantum Theory
  • Receptors, Retinoic Acid
  • Rhodopsin / chemistry*
  • Rhodopsin / radiation effects*
  • Schiff Bases / chemistry
  • Spectrum Analysis / methods

Substances

  • Receptors, Retinoic Acid
  • Schiff Bases
  • Rhodopsin