Lightweight Ultra-High-Barrier Liners for Helium and Hydrogen

ACS Nano. 2020 Jun 23;14(6):7018-7024. doi: 10.1021/acsnano.0c01633. Epub 2020 May 20.

Abstract

Upcoming efficient air-borne wind energy concepts and communication technologies applying lighter-than-air platforms require high-performance barrier coatings, which concomitantly and nonselectively block permeation not only of helium but also of ozone and water vapor. Similarly, with the emergence of green hydrogen economy, lightweight barrier materials for storage and transport of this highly diffusive gas are very much sought-after, particularly in aviation technology. Here the fabrication of ultraperformance nanocomposite barrier liners by spray coating lamellar liquid crystalline dispersions of high aspect ratio (∼20 000) silicate nanosheets mixed with poly(vinyl alcohol) on a PET substrate foil is presented. Lightweight nanocomposite liners with 50 wt % filler content are obtained showing helium and hydrogen permeabilities as low as 0.8 and 0.6 cm3 μm m-2 day-1 atm-1, respectively. This exhibits an improvement up to a factor of 4 × 103 as compared to high-barrier polymers such as ethylene vinyl alcohol copolymers. Furthermore, ozone resistance, illustrated by oxygen permeability measurements at elevated relative humidity (75% r.h.), and water vapor resistance are demonstrated. Moreover, the technically benign processing by spray coating will render this barrier technology easily transferable to real lighter-than-air technologies or irregular- and concave-shaped hydrogen tanks.

Keywords: clay nanosheets; helium barrier; hydrogen economy; lighter-than-air technology; liner.