Density Maximization of One-Step Electrodeposited Copper Nanocones and Dropwise Condensation Heat-Transfer Performance Evaluation

ACS Appl Mater Interfaces. 2020 May 27;12(21):24512-24520. doi: 10.1021/acsami.0c05224. Epub 2020 May 15.

Abstract

Currently, it is still a great challenge to obtain copper-based high-efficient dropwise condensation heat transfer (CHT) interfaces via template-free electrodepositing technologies. Here, we report that the density of template-free electrodeposited copper nanocones can maximally reach 1.5 × 106/mm2 by the synergistic control of substrate surface roughness, poly(ethylene glycol) (PEG) molecular weight, and PEG concentration. After thiol modification, the densely packed copper nanocone samples can present low-adhesive superhydrophobicity and condensate microdrop self-jumping function at ambient environment. Condensation heat and mass transfer characterizations show that the CHT coefficient of copper surfaces can maximally enhance 98% for 20 °C vapor and 51% for 40 °C vapor by in situ growth of superhydrophobic densely packed copper nanocones. Although the dropwise condensation mode can change from the jumping mode to the mixed jumping and sweeping mode and the shedding-off mode along with the increase of surface subcooling and vapor temperature, the CHT performance of the nanosample is still superior to that of the contrast flat hydrophobic surface during the whole testing range of surface subcooling. As vapor temperature increases to 80 °C, the CHT performance of the nanosample is inferior to that of the contrast sample. The CHT enhancement under low-temperature vapor should be ascribed to the enhancement of small-drop mass transfer ability caused by low-adhesive superhydrophobicity nature of nanosample surfaces. Their performance degradation mainly results from increased drop-drop drag force along with the increase of surface subcooling and vapor temperature. In sharp contrast, the CHT deterioration under high-temperature vapor should be ascribed to larger drop-surface adhesion and drop-drop drag force. The former is caused by vapor penetration, whereas the latter is caused by the dramatically increased nucleation density and growth rate of condensates. These findings would help design and develop copper-based high-efficiency condensation heat transfer interfaces.

Keywords: condensation heat transfer; copper nanocones; electrodeposition; superhydrophobic surface; template-free.