Nano on micro: tuning microbial metabolisms by nano-based artificial mediators to enhance and expand production of biochemicals

Curr Opin Biotechnol. 2020 Aug:64:161-168. doi: 10.1016/j.copbio.2020.03.006. Epub 2020 Apr 30.

Abstract

Advances in synthetic biology and metabolic engineering across the past few decades have enabled the successful production of many novel chemicals. However, bioproduction of such chemicals is often limited by low yield and titer due to disrupted metabolic homeostasis. Finely tuning cellular metabolism to restore robust metabolic functions entails various genetic modifications, which is often not practical. Alternatively, artificial mediators capable of tailoring microbial metabolisms open a new avenue for restoring physiological functions. In this context, nanoparticle-based artificial mediators have been pursued to tune cellular metabolisms. They can not only enhance production of molecules from endogenous metabolism, but also expand bioproducts spectrum. Here, we reviewed recent advances toward the employment of nano-based artificial mediators for the tuning of cellular metabolism, with a focus on their positive effects on electron transfer and pathway flux. Perspectives for potential applications of artificial mediators for mediating microbial metabolisms in the future were also provided.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Metabolic Engineering*
  • Synthetic Biology*