Mediated electrochemical oxidation of glucose via poly(methylene green) grafted on the carbon surface catalyzed by flavin adenine dinucleotide-dependent glucose dehydrogenase

Colloids Surf B Biointerfaces. 2020 Apr 21:192:111065. doi: 10.1016/j.colsurfb.2020.111065. Online ahead of print.

Abstract

Electrochemically polymerized phenothiazines (thionine, methylene green, methylene blue, and toluidine blue) on carbon electrodes were investigated as electron transfer mediators of glucose oxidation by flavin adenine dinucleotide-dependent glucose dehydrogenase (FAD-GDH) for biosensor and biofuel cell applications. Among the tested polyphenothiazines grafted on a glassy carbon electrode, clear redox-mediating activity was observed for poly(methylene green), and the catalytic oxidation current depended on the concentrations of glucose and enzymes and the amount of polymer deposited on the electrode surface. The poly(methylene green)-grafted porous carbon electrodes showed 3 mA cm-2 of glucose oxidation current catalyzed by FAD-GDH.

Keywords: Bioelectrocatalysis; Electropolymerization; FAD glucose dehydrogenase; Phenothiazine.