Rapid leaching and recovery of valuable metals from spent Lithium Ion batteries (LIBs) via environmentally benign subcritical nickel-containing water over chlorinated polyvinyl chloride

J Hazard Mater. 2020 Sep 5:396:122667. doi: 10.1016/j.jhazmat.2020.122667. Epub 2020 Apr 20.

Abstract

This study presents the development of an effective and environmentally friendly method to leach and to recover valuable metals, such as lithium (Li) and cobalt (Co) from the spent lithium-ion batteries (LIBs) using subcritical water assisted by nickel catalyst and waste chlorinated polyvinyl chloride (CPVC). The effects of reaction parameters, such as Ni2+ concentration, temperature, time, and liquid-solid ratio on the leaching efficiencies of Li and Co were carefully investigated. The solid residues obtained thereof were characterized by XRD and SEM-EDS analyses, while the leachates were analyzed by ICP-OES. The ICP-OES results showed that about 99.05% of Li and 98.08% of Co were effectively leached from the spent LiCoO2 powder under the following optimized reaction conditions: temperature of 240 °C, reaction time of 40 min, Ni2+ concentration of 0.04 M, and the liquid-solid ratio of 25:1 mL/g, respectively. Finally, based on the precipitation method, the Li and Co were recovered from the leachate as Li2CO3 and Co(OH)2. The results and the method applied in this research suggest that the leaching and recovery of Li and Co from the spent LIBs using subcritical nickel-containing water is an inexpensive, efficient, sustainable and eco-friendly technology.

Keywords: Chlorinated polyvinyl chloride; Spent lithium-ion batteries; leaching; recovery; subcritical nickel-containing water; valuable metals.