Time-domain impedance boundary condition modeling with the discontinuous Galerkin method for room acoustics simulations

J Acoust Soc Am. 2020 Apr;147(4):2534. doi: 10.1121/10.0001128.

Abstract

The time-domain nodal discontinuous Galerkin (TD-DG) method is emerging as a potential wave-based method for three-dimensional (3D) room acoustics modeling, where high-order accuracy in the low frequency range, geometrical flexibility, and accurate modeling of boundary conditions are of critical importance. This paper presents a formulation of broadband time-domain impedance boundary conditions (TDIBCs) of locally-reacting surfaces in the framework of the TD-DG method. The formulation is based on the approximation of the plane-wave reflection coefficient at normal incidence in the frequency domain using a sum of template rational functions, which can be directly transformed to the time-domain. The coupling of the TDIBCs with the discontinuous Galerkin discretization is achieved through the characteristic waves of the upwind flux along the boundary, where a series of first-order auxiliary differential equations is time-integrated in a high-order way. To verify the performance of the formulation, various numerical tests of single reflection scenarios are shown to demonstrate the cost efficiency and memory-efficiency of high-order basis functions, among which a 3D application to an impedance boundary of rigidly backed glass-wool baffle for room acoustic purposes is presented.