Coexistence mechanisms of Tamarix chinensis and Suaeda salsa in the Yellow River Delta, China

Environ Sci Pollut Res Int. 2020 Jul;27(21):26172-26181. doi: 10.1007/s11356-020-08883-1. Epub 2020 May 2.

Abstract

To examine how two dominant species coexist within a tidal wetland in the Yellow River Delta, we studied the spatial distribution patterns and ecological relationships of Tamarix chinensis and Suaeda salsa. We also analyzed the relationship between these two plant species and soil chemical properties. Nine quadrats were established, and aerial photography was carried out in July 2018 in the study area to investigate plants and soil. Results showed that T. chinensis showed an aggregation distribution at scales of 0-10 m, 0-30 m, and 0-50 m from the sea to inland. Unlike T. chinensis, S. salsa showed an aggregation distribution at approximately 0-50 m in the study area, which meant the aggregation distributions of T. chinensis and S. salsa were found at different scales and S. salsa tended to aggregate distribution compared with T. chinensis. Meanwhile, T. chinensis and S. salsa had negative correlations far from the sea at a scale of 0-20 m and at the offshore area at a scale of 0-30 m. However, in the intermediate area, S. salsa and T. chinensis showed a positive correlation at a scale of 0-30 m. In general, the relationship between the two groups tends to be negatively correlated in a small range. Given that the tidal action decreased from the sea to inland, the driving factors of population aggregation gradually changed from tidal flooding to an interspecific relationship. The different characteristics of the different species may also have had an effect. And the aggregation of adult plant species had a beneficial impact on the establishment and growth of seedlings and plants. Furthermore, soil properties comprised complex actions including environmental conditions and ecological processes. The soil chemical properties such as soil salinity and nutrients were also influenced by the species' canopy.

Keywords: Interspecific relationships; S. salsa; Soil properties; Spatial point pattern; T. chinensis.

MeSH terms

  • Chenopodiaceae*
  • China
  • Rivers
  • Soil
  • Tamaricaceae*

Substances

  • Soil