An information theory approach to biocultural complexity

Sci Rep. 2020 Apr 29;10(1):7203. doi: 10.1038/s41598-020-64260-5.

Abstract

The study of biocultural diversity requires the use of appropriate concepts and analytical tools. Particularly, there is a need of indices capable to show the degree of stratification in the set of interactions among cultures and groups of plants and animals in a given region. Here, we present a mathematical approach based on the mutual Shannon information theory to study the relationships among cultural and biological groups. Biocultural complexity was described in terms of effective biocultural units, a new concept defined in this work. From the mathematical formulation of biocultural complexity, formulas were derived to measure the specificity of biological groups and the specialization of cultures, based on the association of human societies with plant or animal groups. To exemplify the concepts and tools, two data sets were analyzed; 1) a set that included artificial data in order to demonstrate the use of the formulas and calculate the indices, and 2) a set that included published data on the use of 18 mushroom species by people in five villages of eastern India. Analysis of the first data set revealed a clear case of biocultural complexity, whereas that of the second set showed that the villages and the use of biological resources composed a single biocultural unit. Overall, hypothesis testing of the association among cultures and biological species was consistent with the information that was provided by the new indices.

MeSH terms

  • Agaricales*
  • Biodiversity*
  • Conservation of Natural Resources*
  • Ethnobotany*
  • Humans
  • India
  • Information Theory*